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About This Guide  
Many state science standards encourage the use of mathematics and statistics in biology education, including 

the newly designed AP Biology course, IB Biology, Next Generation Science Standards, and the Common Core. 

Several resources on the BioInteractive website (www.biointeractive.org), which are listed in the table at the 

end of this document, make use of math and statistics to analyze research data. This guide is meant to help 

educators use these BioInteractive resources in the classroom by providing further background on the 

statistical tests used and step-by-step instructions for doing the calculations. Although most of the example 

data sets included in this guide are not real and are simply provided to illustrate how the calculations are done, 

the data sets on which the BioInteractive resources are based represent actual research data.  

This guide is not meant to be a textbook on statistics; it only covers topics most relevant to high school biology, 

focusing on methods and examples rather than theory. It is organized in four parts:  

 

 Part 1 covers descriptive statistics, methods used to organize, summarize, and describe quantifiable 
data. The methods include ways to describe the typical or average value of the data and the spread of 
the data. 

 

 Part 2 covers statistical methods used to draw inferences about populations on the basis of 
observations made on smaller samples or groups of the population—a branch of statistics known as 
inferential statistics. 

 

 Part 3 describes other mathematical methods commonly taught in high school biology, including 
frequency and rate calculations, Hardy-Weinberg calculations, probability, and standard curves.  

 

 Part 4 provides a chart of activities on the BioInteractive website that use math and statistics methods. 
 
A first draft of the guide was published in July 2014. It was revised based on user feedback and expert review, 

and an updated version was published in January 2015. The guide will continue to be updated with new 

content and based on ongoing feedback and review. 

For a more comprehensive discussion of statistical methods and additional classroom examples, refer to  
John McDonald’s Handbook of Biological Statistics, http://www.biostathandbook.com, and the College Board’s 
AP Biology Quantitative Skills: A Guide for Teachers, 
http://apcentral.collegeboard.com/apc/public/repository/AP_Bio_Quantitative_Skills_Guide-2012.pdf. 

  

http://www.biointeractive.org/
http://www.biostathandbook.com/
http://apcentral.collegeboard.com/apc/public/repository/AP_Bio_Quantitative_Skills_Guide-2012.pdf
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Statistical Symbols and Equations 
 

Listed below are the universal statistical symbols and equations used in this guide. The calculations can all be 

done using scientific calculators or the formula function in spreadsheet programs. 

 

𝑁:  Total number of individuals in a population (i.e., the total number of butterflies of a particular species) 

     𝑛:  Total number of individuals in a sample of a population (i.e., the number of butterflies in a net) 

     df: The number of measurements in a sample that are free to vary once the sample mean has been 

calculated; in a single sample, df = 𝑛 – 1 

     𝑥𝑖: A single measurement 

     𝑖:  The 𝑖th observation in a sample 

     : Summation 

     �̅�: Sample mean     �̅� = 
∑  𝑥𝑖

𝑛
 

     𝑠2: Sample variance   𝑠2 = 
∑ (𝑥𝑖 − �̅�)2

𝑛 − 1
 

       𝑠: Sample standard deviation  𝑠 = √𝑠2 

     SEx : Sample standard error, or standard error of the mean (SEM) SE = 
𝑠

√𝑛
 

     95% CI: 95% confidence interval  95% CI = 
1.96𝑠

√𝑛
 

     t-test:     tobs = 
|�̅�1− �̅�2|

√
𝑠1

2

𝑛1
 + 

𝑠2
2

𝑛2

 

     Chi-square test (𝑋2):    𝑋2 = ∑
(𝑜−𝑒)2

𝑒
 

     Linear regression test:   𝑟 = 
∑ (

𝑥𝑖  − �̅�

𝑠𝑥
)𝑛

𝑖=1 (
𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛 − 1
 

 

     Hardy-Weinberg principle:   p2 + 2pq + q2 = 1.0 
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Part 1: Descriptive Statistics Used in Biology 
Scientists typically collect data on a sample of a population and use these data to draw conclusions, or make 

inferences, about the entire population. An example of such a data set is shown in Table 1. It shows beak 

measurements taken from two groups of medium ground finches that lived on the island of Daphne Major, 

one of the Galápagos Islands, during a major drought in 1977. One group of finches died during the drought, 

and one group survived. (These data were provided by scientists Peter and Rosemary Grant, and the 

complete data are available on the BioInteractive website at 

http://www.hhmi.org/biointeractive/evolution-action-data-analysis.) 

Table 1. Beak Depth Measurements in a Sample of Medium Ground Finches from Daphne Major 

 

Note: “Band” refers to an individual’s identity—more specifically, the number on a metal leg band it 

was given. Fifty individuals died in 1977 (nonsurvivors) and 50 survived beyond 1977 (survivors), the 

year of the drought. 

 

http://www.hhmi.org/biointeractive/evolution-action-data-analysis
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How would you describe the data in Table 1, and what does it tell you about the populations of medium 

ground finches of Daphne Major? These are difficult questions to answer by looking at a table of numbers. 

One of the first steps in analyzing a small data set like the one shown in Table 1 is to graph the data and 

examine the distribution. Figure 1 shows two graphs of beak measurements. The graph on the top shows beak 

measurements of finches that died during the drought. The graph on the bottom shows beak measurements of 

finches that survived the drought.  

Beak Depths of 50 Medium Ground Finches That Did Not Survive the Drought 

 

Beak Depths of 50 Medium Ground Finches That Survived the Drought 

 

 
 
 
 

 

 

 
 

Figure 1. Distributions of Beak Depth Measurements in Two Groups of Medium Ground Finches  

 
Notice that the measurements tend to be more or less symmetrically distributed across a range, with most 

measurements around the center of the distribution. This is a characteristic of a normal distribution. Most 

statistical methods covered in this guide apply to data that are normally distributed, like the beak 

measurements above; other types of distributions require either different kinds of statistics or transforming 

data to make them normally distributed. 

How would you describe these two graphs? How are they the same or different? Descriptive statistics allows 

you to describe and quantify these differences. The rest of Part 1 of this guide provides step-by-step 

instructions for calculating mean, standard deviation, standard error, and other descriptive statistics. 
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Measures of Average: Mean, Median, and Mode 
In the two graphs in Figure 1, the center and spread of each distribution is different. The center of the 

distribution can be described by the mean, median, or mode. These are referred to as measures of central 

tendency.  

Mean 

You calculate the sample mean (also referred to as the average or arithmetic mean) by summing all the data 

points in a data set (ΣX) and then dividing this number by the total number of data points (N): 

 
What we want to understand is the mean of the entire population, which is represented by μ. They use the 
sample mean, represented by �̅�, as an estimate of μ.  

 
Application in Biology  

Students in a biology class planted eight bean seeds in separate plastic cups and placed them under a bank of 

fluorescent lights. Fourteen days later, the students measured the height of the bean plants that grew from 

those seeds and recorded their results in Table 2.  

Table 2. Bean Plant Heights 

Plant No. 1 2 3 4 5 6 7 8 

Height (cm) 7.5 10.1 8.3 9.8 5.7 10.3 9.2 8.7 

 
To determine the mean of the bean plants, follow these steps: 
 

I. Find the sum of the heights: 
 

7.5 + 10.1 + 8.3 + 9.8 + 5.7 + 10.3 + 9.2 + 8.7 = 69.6 centimeters 
 

II. Count the number of height measurements: 
 
There are 8 height measurements.  
 

III. Divide the sum of the heights by the number of measurements to compute the mean: 
 

mean = 69.6 cm/8 = 8.7 centimeters 
 

The mean for this sample of eight plants is 8.7 centimeters and serves as an estimate for the true mean of the 

population of bean plants growing under these conditions. In other words, if the students collected data from 

hundreds of plants and graphed the data, the center of the distribution should be around 8.7 centimeters. 

Median 

When the data are ordered from the largest to the smallest, the median is the midpoint of the data. It is not 

distorted by extreme values, or even when the distribution is not normal. For this reason, it may be more 

useful for you to use the median as the main descriptive statistic for a sample of data in which some of the 

measurements are extremely large or extremely small.  
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To determine the median of a set of values, you first arrange them in numerical order from lowest to highest. 

The middle value in the list is the median. If there is an even number of values in the list, then the median is 

the mean of the middle two values. 

Application in Biology 

A researcher studying mouse behavior recorded in Table 3 the time (in seconds) it took 13 different mice to 

locate food in a maze.  

Table 3. Length of Time for Mice to Locate Food in a Maze 

Mouse No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Time (sec.) 31 33 163 33 28 29 33 27 27 34 35 28 32 

 
To determine the median time that the mice spent searching for food, follow these steps: 
 

I. Arrange the time values in numerical order from lowest to highest: 
 

   27, 27, 28, 28, 29, 31, 32, 33, 33, 33, 34, 35, 163 
 

II. Find the middle value. This value is the median: 
 

   median = 32 seconds 
 
In this case, the median is 32 seconds, but the mean is 41 seconds, which is longer than all but one of the mice 

took to search for food. In this case, the mean would not be a good measure of central tendency unless the 

really slow mouse is excluded from the data set. 

Mode 

The mode is another measure of the average. It is the value that appears most often in a sample of data. In the 

example shown in Table 3, the mode is 33 seconds. 

The mode is not typically used as a measure of central tendency in biological research, but it can be useful in 

describing some distributions. For example, Figure 2 shows a distribution of body lengths with two peaks, or 

modes—called a bimodal distribution. Describing these data with a measure of central tendency like the mean 

or median would obscure this fact.  

 

 
Figure 2. Graph of Body Lengths of Weaver Ant Workers (Reproduced from 

http://en.wikipedia.org/wiki/File:BimodalAnts.png.)  
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When to Use Which One 

The purpose of these statistics is to characterize “typical” data from a data set. You use the mean most often 

for this purpose, but it becomes less useful if the data in the data set are not normally distributed. When the 

data are not normally distributed, then other descriptive statistics can give a better idea about the typical 

value of the data set. The median, for example, is a useful number if the distribution is heavily skewed. For 

example, you might use the median to describe a data set of top running speeds of four-legged animals, most 

of which are relatively slow and a few, like cheetahs, are very fast. The mode is not used very frequently in 

biology, but it may be useful in describing some types of distributions—for example, ones with more than one 

peak. 

Measures of Variability: Range, Standard Deviation, and Variance 
Variability describes the extent to which numbers in a data set diverge from the central tendency. It is a 

measure of how “spread out” the data are. The most common measures of variability are range, standard 

deviation, and variance.  

Range 

The simplest measure of variability in a sample of normally distributed data is the range, which is the 

difference between the largest and smallest values in a set of data.  

Application in Biology 

Students in a biology class measured the width in centimeters of eight leaves from eight different maple trees 

and recorded their results in Table 4. 

Table 4. Width of Maple Tree Leaves 

Plant No. 1 2 3 4 5 6 7 8 

Width (cm) 7.5 10.1 8.3 9.8 5.7 10.3 9.2 8.7 

 
To determine the range of leaf widths, follow these steps: 
 

I. Identify the largest and smallest values in the data set: 
 

largest = 10.3 centimeters, smallest = 5.7 centimeters 
 

II. To determine the range, subtract the smallest value from the largest value: 
 

range = 10.3 centimeters – 5.7 centimeters = 4.6 centimeters 
 

A larger range value indicates a greater spread of the data—in other words, the larger the range, the greater 

the variability. However, an extremely large or small value in the data set will make the variability appear high. 

For example, if the maple leaf sample had not included the very small leaf number 5, the range would have 

been only 2.8 centimeters. The standard deviation provides a more reliable measure of the “true” spread of 

the data.  
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Standard Deviation and Variance  

The standard deviation is the most widely used measure of variability. The sample standard deviation (s) is 

essentially the average of the deviation between each measurement in the sample and the sample mean (𝑥). 

The sample standard deviation estimates the standard deviation in the larger population.  

The formula for calculating the sample standard deviation follows: 

s = √
∑ (𝑥𝑖 − 𝑥)2

(𝑛 − 1)
 

Calculation Steps 
1. Calculate the mean (𝑥) of the sample. 

 
2. Find the difference between each measurement (𝑥i) in the data set and the mean (𝑥) of the entire set:  
 

(𝑥i − 𝑥) 
 
3. Square each difference to remove any negative values:  
 

(𝑥i − 𝑥)2 
 

4. Add up (sum, ) all the squared differences:  
 

 (𝑥i − 𝑥)2 
 
5. Divide by the degrees of freedom (df), which is 1 less than the sample size (n – 1):  
 

∑ (𝑥𝑖 −  𝑥)2

(𝑛 − 1)
 

Note that the number calculated at this step provides a statistic called variance (s2). Variance is a measure of 

variability that is used in many statistical methods. It is the square of the standard deviation. 

6. Take the square root to calculate the standard deviation (s) for the sample.  

 
Application in Biology 

You are interested in knowing how tall bean plants (Phaseolus vulgaris) grow in two weeks after planting. You 

plant a sample of 20 seeds (n = 20) in separate pots and give them equal amounts of water and light. After two 

weeks, 17 of the seeds have germinated and have grown into small seedlings (now n = 17). You measure each 

plant from the tips of the roots to the top of the tallest stem. You record the measurements in Table 5, along 

with the steps for calculating the standard deviation. 
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Table 5. Plant Measurements and Steps for Calculating the Standard Deviation 

Plant No. Plant Height (mm) Step 2: (𝑥i − 𝑥) 
(mm) 

Step 3: (𝑥i − 𝑥)
2 

(mm
2
) 

1 112 (112 – 103) = 9 9
2
 = 81 

2 102 (102 – 103) = (−1) (−1)
2
 = 1 

3 106 (106 – 103) = 3 3
2
 = 9 

4 120 (120 – 103) = 17 17
2
 = 289 

5 98 (98 – 103) = (−5) (−5)
2
 = 25 

6 106 (106 – 103) = 3 3
2
 = 9 

7 80 (80 – 103) = (−23) (−23)
2
 = 529 

8 105 (105 – 103) = 2 2
2
 = 4 

9 106 (106 – 103) = 3 3
2
 = 9 

10 110 (110 – 103) = 7 7
2
 = 49 

11 95 (95 – 103) = (−8) (−8)
2
 = 64 

12 98 (98 – 103) = (−5) (−5)
2
 = 25 

13 74 (74 – 103) = (−29) (−29)
2
 = 841 

14 112 (112 – 103) = 9 9
2
 = 81 

15 115 (115 – 103) = 12 12
2
 = 144 

16 109 (109 – 103) = 6 6
2
 = 36 

17 100 (100 – 103) = (−3) (−3)
2
 = 9 

Step 1: Calculate 
mean. 

𝑥 = 103 mm  
Step 4: ∑ (𝑥i − 𝑥)

2
  

= 2,205  

  Variance, s
2
 

𝑆𝑡𝑒𝑝 5: ∑ (𝑥i − 𝑥)
2
/(n – 1) = 

2,205/16 = 138 

  Standard Deviation, s 
Step 6: √𝑠2 

= √138 = 11.7 mm 

Note: The units for variance are squared units, which make variance less useful as a measure of 
dispersion. 

 

The mean height of the bean plants in this sample is 103 millimeters ±11.7 millimeters. What does this tell us? 

In a data set with a large number of measurements that are normally distributed, 68.3% (or roughly two-

thirds) of the measurements are expected to fall within 1 standard deviation of the mean and 95.4% of all 

data points lie within 2 standard deviations of the mean on either side (Figure 3). Thus, in this example, if you 

assume that this sample of 17 observations is drawn from a population of measurements that are normally 

distributed, 68.3% of the measurements in the population should fall between 91.3 and 114.7 millimeters and 

95.4% of the measurements should fall between 

80.1 millimeters and 125.9 millimeters. 

 
 
 

 

 

 

Figure 3. Theoretical Distribution of Plant Heights. 

For normally distributed data, 68.3% of data points 

lie between ±1 standard deviation of the mean and 

95.4% of data points lie between ±2 standard 

deviations of the mean.  
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We can graph the mean and the standard deviation of this sample of bean plants using a bar graph with error 

bars (Figure 4). Standard deviation bars summarize the variation in the data—the more spread out the 

individual measurements are, the larger the standard deviation. On the other hand, error bars based on the 

standard error of the mean or the 95% confidence interval reveal the uncertainty in the sample mean. They 

depend on how spread out the measurements are and on the sample size. (These statistics are discussed 

further in “Measures of Confidence: Standard Error of the Mean and 95% Confidence Interval”.) 

 
 

 

 

 

 

 

 

Figure 4. Mean Plant Height of a Sample of Bean Plants and an 

Error Bar Representing ±1 Standard Deviation. Roughly two-thirds 

of the measurements in this population would be expected to fall 

in the range indicated by the bar.  

 
A common misconception is that standard deviation decreases with increasing sample size. As you increase 

the sample size, standard deviation can either increase or decrease depending on the measurements in the 

sample. However, with a larger sample size, standard deviation will become a more accurate estimate of the 

standard deviation of the population.  

Understanding Degrees of Freedom 

Calculations of sample estimates, such as the standard deviation and variance, use degrees of freedom instead 

of sample size. The way you calculate degrees of freedom depends on the statistical method you are using, but 

for calculating the standard deviation, it is defined as 1 less than the sample size (n − 1). 

To illustrate what this number means, consider the following example. Biologists are interested in the variation 

in leg sizes among grasshoppers. They catch five grasshoppers (𝑛 = 5) in a net and prepare to measure the left 

legs. As the scientists pull grasshoppers one at a time from the net, they have no way of knowing the leg 

lengths until they measure them all. In other words, all five leg lengths are “free” to vary within some general 

range for this particular species. The scientists measure all five leg lengths and then calculate the mean to be x 

= 10 millimeters. They then place the grasshoppers back in the net and decide to pull them out one at a time 

to measure them again. This time, since the biologists already know the mean to be 10, only the first four 

measurements are free to vary within a given range. If the first four measurements are 8, 9, 10, and 12 

millimeters, then there is no freedom for the fifth measurement to vary; it has to be 11. Thus, once they know 

the sample mean, the number of degrees of freedom is 1 less than the sample size, df = 4. 
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Measures of Confidence: Standard Error of the Mean and 95% Confidence Interval 
The standard deviation provides a measure of the spread of the data from the mean. A different type of 

statistic reveals the uncertainty in the calculation of the mean. 

The sample mean is not necessarily identical to the mean of the entire population. In fact, every time you take 

a sample and calculate a sample mean, you would expect a slightly different value. In other words, the sample 

means themselves have variability. This variability can be expressed by calculating the standard error of the 

mean (abbreviated as SE�̅� or SEM).  

To illustrate this point, assume that there is a population of a species of anole lizards living on an island of the 

Caribbean. If you were able to measure the length of the hind limbs of every individual in this population and 

then calculate the mean, you would know the value of the population mean. However, there are thousands of 

individuals, so you take a sample of 10 anoles and calculate the mean hind limb length for that sample. 

Another researcher working on that island might catch another sample of 10 anoles and calculate the mean 

hind limb length for this sample, and so on. The sample means of many different samples would be normally 

distributed. The standard error of the mean represents the standard deviation of such a distribution and 

estimates how close the sample mean is to the population mean.  

The greater each sample size (i.e., 50 rather than 10 anoles), the more closely the sample mean will estimate 

the population mean, and therefore the standard error of the mean becomes smaller. 

To calculate SE�̅� or SEM divide the standard deviation by the square root of the sample size: 

                    𝑠 = √
∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 

 

                    SE�̅� = 
𝑠

√𝑛
 

 
What the standard error of the mean tells you is that about two-thirds (68.3%) of the sample means would 

be within ±1 standard error of the population mean and 95.4% would be within ±2 standard errors. 

Another more precise measure of the uncertainty in the mean is the 95% confidence interval (95% CI). For 

large sample sizes, 95% CI can be calculated using this formula: 
1.96𝑠

√𝑛
, which is typically rounded to 

2𝑠

√𝑛
 for ease 

of calculation. In other words, 95% CI is about twice the standard error of the mean. 
 
The actual formula for calculating 95% CI uses a statistic called the t-value for a significance level of 0.05, which 
is explained in Table 8 in Part 2. For large sample sizes, this t-value is 1.96. Since t-values are not typically 
covered in high school biology, in this guide we estimate the 95% CI by using 2 x SEM, but note that this is just 
an approximation. 
 
Note about Error Bars: Many bar graphs include error bars, which may represent standard deviation, SEM, or 

95% CI. When the bars represent SEM, you know that if you took many samples only about two-thirds of the 

error bars would include the population mean. This is very different from standard deviation bars, which show 

how much variation there is among individual observations in a sample. When the error bars represent 95% 

confidence intervals in a graph, you know that in about 95% of cases the error bars include the population 
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mean. If a graph shows error bars that represent SEM, you can estimate the 95% confidence interval by making 

the bars twice as big—this is a fairly accurate approximation for large sample sizes, but for small samples the 

95% confidence intervals are actually more than twice as big as the SEMs. 

Application in Biology—Example 1 

Seeds of many weed species germinate best in recently disturbed soil that lacks a light-blocking canopy of 

vegetation. Students in a biology class hypothesized that weed seeds germinate best when exposed to light. To 

test this hypothesis, the students placed a seed from crofton weed (Ageratina adenophora, an invasive species 

on several continents) in each of 20 petri dishes and covered the seeds with distilled water. They placed half 

the petri dishes in the dark and half in the light. After one week, the students measured the combined lengths 

in millimeters of the radicles and shoots extending from the seeds in each dish. Table 6 shows the data and 

calculations of variance, standard deviation, standard error of the mean, and 95% confidence interval. The 

students plotted the data as two bar graphs showing the standard error of the mean and 95% confidence 

interval (Figure 5). 

Table 6. Combined Lengths of Crofton Weed Radicles and Shoots after One Week in the Dark and the Light 

Petri Dishes Dark (𝒙𝟏) 
(mm) 

Light (𝒙𝟐) 
(mm) 

Dark (𝒙𝒊 − �̅�𝟏)
2 

(mm
2
) 

Light (𝒙𝒊 − �̅�𝟐)
2 

(mm
2
) 

1 and 2 12 18 (12 – 9.6)
2
 = 5.8 (18 – 18.4)

2
 = 0.16 

3 and 4 8 22 (8 – 9.6)
2
 = 2.6 (22 – 18.4)

2
 = 12.96 

5 and 6 15 17 (15 – 9.6)
2
 = 29.1 (17 – 18.4)

2
 = 1.96 

7 and 8 13 23 (13 – 9.6)
2
 = 11.5 (23 – 18.4)

2
 = 21.16 

9 and 10 6 16 (6 – 9.6)
2
 = 13.0 (16 – 18.4)

2
 = 5.76 

11 and 12 4 18 (4 – 9.6)
2
 = 31.4 (18 – 18.4)

2
 = 0.16 

13 and 14 13 22 (13 – 9.6)
2
 = 11.6 (22 – 18.4)

2
 = 12.96 

15 and 16 14 12 (14 – 9.6)
2
 = 19.3 (12 – 18.4)

2
 = 40.96 

17 and 18 5 19 (5 – 9.6)
2
 = 21.1 (19 – 18.4)

2
 = 0.36 

19 and 20 6 17 (6 – 9.6)
2
 = 13.0 (17 – 18.4)

2
 = 1.96 

   ∑ (𝑥𝑖 − �̅�1)
2 

= 158.4 ∑ (𝑥𝑖 − �̅�2)
2
 = 98.4 

Mean (�̅�) 
�̅�1 = 9.6 (10) 

mm 
�̅�2 = 18.4 (18) 

mm 
∑  (𝑥𝑖− 𝑥)2

(𝑛 − 1)
 = 

158.4

9
 

∑ (𝑥𝑖− 𝑥)2

(𝑛 − 1)
 = 

98.4

9
 

  Variance (𝑠2) 𝑠1
2 = 17.6 𝑠2

2 = 10.93 

Standard Deviation, 𝑠 =√
∑ (𝑥𝑖− 𝑥)2

(𝑛 − 1)
 𝑠 = 4.20 mm 𝑠 = 3.31 mm 

Standard Error of the Mean, SE�̅�  = 
𝑠

√𝑛
 SE�̅�  = 

4.20

√10
 = 1.33 SE�̅�  = 

3.31

√10
 = 1.05 

95% CI = 
𝟐𝒔

√𝒏
 95% CI = 

2(4.20)

√10
 = 2.7 95% CI = 

2(4.74)

√10
 = 2.1 

Note: The number of replicates (i.e., sample size, n) = 10. Means in parentheses, that is, (10) and (18), 
are to the nearest millimeter. 
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Figure 5. Mean Length of Crofton Seedlings after One Week in the Dark or in the Light. The standard error of the mean 

graph shows the 𝐒𝐄�̅� as error bars, and the 95% confidence interval graph shows the 𝟗𝟓% 𝐂𝐈 as error bars. (Note that in 

these calculations we approximated 95% CI as about twice the SEM.) 

 
The calculations in Table 6 show that although the students don’t know the actual mean combined radicle and 

shoot length of the entire population of crofton plants in the dark, it is likely to be a number around the 

sample mean of 9.6 millimeters ± 1.3 millimeters. For the light treatment it is likely to be 18.4 millimeters ± 1 

millimeter.  The students can be even more certain that the population mean would be 9.6 millimeters ±2.6 

millimeters for the dark treatment and 18.4 millimeters ± 2.1 millimeters for the light treatment.  

Note: By looking at the bar graphs, you can see that the means for the light and dark treatments are different. 

Because the 95% confidence interval error bars do not overlap, this suggests that the true population means 

are also different. However, in order to determine whether this difference is significant, you will need to 

conduct another statistical test, the Student’s t-test, which is covered in ”Comparing Averages” in Part 2 of this 

guide. 

Application in Biology—Example 2 

A teacher had five students write their names on the board, first with their dominant hands and then with 

their nondominant hands. The rest of the class observed that the students wrote more slowly and with less 

precision with the nondominant hand than with the dominant hand. The teacher then asked the class to 

explain their observations by developing testable hypotheses. They hypothesized that the dominant hand was 

better at performing fine motor movements than the nondominant hand. The class tested this hypothesis by 

timing (in seconds) how long it took each student to break 20 toothpicks with each hand. The results of the 

experiment and the calculations of variance, standard deviation, standard error of the mean, and 95% 

confidence interval are presented in Table 7. The students then illustrated the data and uncertainty with two 

bar graphs, one showing the standard error of the mean and the other showing the 95% confidence interval 

(Figure 6). 

 

Standard Error of the Mean 95% Confidence Interval 
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Table 7. Number of Seconds It Took for Students to Break 20 Toothpicks with Their Nondominant (ND) and 

Dominant (D) Hands (number of replicates [n] = 14) 

Students ND (𝒙𝟏) 
(sec.) 

D (𝒙𝟐) 
(sec.) 

ND (𝒙𝒊 − �̅�𝟏)
2
 D (𝒙𝒊 − �̅�𝟐)

2
 

Josh 33 37 (33 – 33)
2
 = 0 (37 – 35)

2
 = 4 

Bobby 24 22 (24 – 33)
2
 = 81 (22 – 35)

2
 = 169 

Qing 35 37 (35 – 33)
2
 = 4 (37 – 35)

2
 = 4 

Julie 33 28 (33 – 33)
2
 = 0 (28 – 35)

2
 = 49 

Lisa 42 50 (42 – 33)
2
 = 81 (50 – 35)

2
 = 225 

Akash 36 36 (36 – 33)
2
 = 9 (36 – 35)

2
 = 1 

Hector 31 36 (31 – 33)
2
 = 4 (36 – 35)

2
 = 1 

Viviana 40 46 (40 – 33)
2
 = 49 (46 – 35)

2
 = 121 

Brenda 28 26 (28 – 33)
2
 = 25 (26 – 35)

2
 = 81 

Jane 24 28 (24 – 33)
2
 = 81 (28 – 35)

2
 = 49 

Asa 23 22 (23 – 33)
2
 = 100 (22 – 35)

2
 = 169 

Eli 44 52 (44 – 33)
2
 = 121 (52 – 35)

2
 = 289 

Adee 35 29 (35 – 33)
2
 = 4 (29 – 35)

2
 = 36 

Jenny 36 37 (36 – 33)
2
 = 9 (37 – 35)

2
 = 4 

   ∑ (𝑥𝑖  − �̅�1)
2 

= 568 ∑ (𝑥𝑖 − �̅�2)
2
 = 1,200 

Mean (�̅�) �̅�1 = 33 �̅�2 = 35 
∑ (𝑥𝑖 − �̅�1)2 

𝑛 − 1
 = 

568

13
 

∑ (𝑥𝑖 − �̅�2)2 

𝑛 − 1
 = 

1,200

13
 

  Variance, 𝑠2 𝑠1
2 = 44 𝑠2

2 = 92 

Standard Deviation, 𝑠 =√
∑ (𝑥𝑖− 𝑥)2

(𝑛 − 1)
 𝑠 = 6.6 sec. 𝑠 = 9.6 sec. 

Standard Error of the Mean, SE�̅�  = 
𝒔

√𝒏
 SE�̅�  = 

6.6

√14
 = 1.8 sec. SE�̅�  = 

9.6

√14
 = 2.6 sec. 

95% CI = 
𝟐𝒔

√𝒏
 95% CI = 

2(6.84)

√14
 = 3.5 95% CI = 

2(9.6)

√14
 = 5.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Mean Number of Seconds for Students to Break 20 Toothpicks with their Nondominant Hands (ND) and 

Dominant Hands (D). The standard error of the mean graph shows the 𝐒𝐄�̅� as error bars, and the 95% confidence interval 

graph shows the 𝟗𝟓% 𝐂𝐈 as error bars. 

 

Standard Error of the Mean 95% Confidence Interval 
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The calculations indicate that it takes about 31.2 seconds (33 − 1.8) to 34.8 seconds (33 + 1.8) for the 

nondominant hand to break toothpicks and about 32.4 to 37.6 seconds for the dominant hand. You can be 

more certain that the average for the nondominant hand would fall somewhere between 29.5 seconds (33 – 

3.5) and 36.5 seconds (33 + 3.5) and for the dominant hands falls somewhere between 29.9 seconds (35 – 5.1) 

and 40.1 seconds (35 + 5.1).  

This ends the part on descriptive statistics. Going back to the finch data set in Table 1 and Figure 1 of Part 1, 

how would you calculate the sample means for beak sizes of the survivors and nonsurvivors? Is there more 

variability among survivors or nonsurvivors? What is the uncertainty in your sample mean estimates? To 

find the answers to these questions, see the “Evolution in Action: Data Analysis” activities at 

http://www.hhmi.org/biointeractive/evolution-action-data-analysis.  

Part 2: Inferential Statistics Used in Biology 
Inferential statistics tests statistical hypotheses, which are different from experimental hypotheses. To 

understand what this means, assume that you do an experiment to test whether “nitrogen promotes plant 

growth.” This is an experimental hypothesis because it tells you something about the biology of plant growth. 

To test this hypothesis, you grow 10 bean plants in dirt with added nitrogen and 10 bean plants in dirt without 

added nitrogen. You find out that the means of these two samples are 13.2 centimeters and 11.9 centimeters, 

respectively. Does this result indicate that there is a difference between the two populations and that nitrogen 

might promote plant growth? Or is the difference in the two means merely due to chance? A statistical test is 

required to discriminate between these possibilities. 

Statistical tests evaluate statistical hypotheses. The statistical null hypothesis (symbolized by H0 and 

pronounced H-naught) is a statement that you want to test. In this case, if you grow 10 plants with nitrogen 

and 10 without, the null hypothesis is that there is no difference in the mean heights of the two groups and 

any observed difference between the two groups would have occurred purely by chance. The alternative 

hypothesis to H0 is symbolized by H1 and usually simply states that there is a difference between the 

populations.  

The statistical null and alternative hypotheses are statements about the data that should follow from the 

experimental hypothesis.  

Significance Testing: The  (Alpha) Level 
Before you perform a statistical test on the plant growth data, you should determine an acceptable 

significance level of the null statistical hypothesis. That is, ask, when do I think my results and thus my test 

statistic are so unusual that I no longer think the differences observed in my data are simply due to chance? 

This significance level is also known as “alpha” and is symbolized by .  

The significance level is the probability of getting a test statistic rare enough that you are comfortable 

rejecting the null hypothesis (H0). (See the “Probability” section of Part 3 for further discussion of probability.) 

The widely accepted significance level in biology is 0.05. If the probability (p) value is less than 0.05, you reject 

the null hypothesis; if p is greater than or equal to 0.05, you don’t reject the null hypothesis. 

http://www.hhmi.org/biointeractive/evolution-action-data-analysis
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Comparing Averages: The Student’s t-Test for Independent Samples 
The Student’s t-test is used to compare the means of two samples to determine whether they are 

statistically different. For example, you calculated the sample means of survivor and nonsurvivor finches from 

Table 1 and you got different numbers. What is the probability of getting this difference in means, if the 

population means are really the same?  

The t-test assesses the probability of getting the observed result (i.e., the values you calculated for the means 

shown in Figure 1) if the null statistical hypothesis (H0) is true. Typically, the null statistical hypothesis in a t-

test is that the mean of sample 1 (i.e., the mean beak size of survivors) is equal to the mean of sample 2 (i.e., 

the mean beak size of the nonsurvivors), or 𝑥1 = 𝑥2. Rejecting H0 supports the alternative hypothesis, H1, that 

the means are significantly different (𝑥1  𝑥2). In the finch example, the t-test determines whether any 

observed differences between the means of the two groups of finches (9.67 millimeters versus 9.11 

millimeters) are statistically significant or have likely occurred simply by chance.  

A t-test calculates a single statistic, t, or tobs, which is compared to a critical t-statistic (tcrit): 

tobs = 
|�̅�1− �̅�2|

𝑆𝐸
 

 
To calculate the standard error (SE) specific for the t-test, we calculate the sample means and the variance (s2) 

for the two samples being compared—the sample size (n) for each sample must be known:  

SE = √
𝑠1

2

𝑛1
 + 

𝑠2
2

𝑛2
 

Thus, the complete equation for the t-test is 
 

tobs = 
|�̅�1− �̅�2|

√
𝑠1

2

𝑛1
 + 

𝑠2
2

𝑛2

 

Calculation Steps 
1. Calculate the mean of each sample population and subtract one from the other. Take the absolute 

value of this difference. 
 
2. Calculate the standard error, SE. To compute it, calculate the variance of each sample (s2), and divide it 

by the number of measured values in that sample (n, the sample size). Add these two values and then 
take the square root. 

 
3. Divide the difference between the means by the standard error to get a value for t. Compare the 

calculated value to the appropriate critical t-value in Table 8. Table 8 shows tcrit for different degrees of 
freedom for a significance value of 0.05. The degrees of freedom is calculated by adding the number 
of data points in the two groups combined, minus 2. Note that you do not have to have the same 
number of data points in each group. 

 
4.  If the calculated t-value is greater than the appropriate critical t-value, this indicates that the means of 

the two samples are significantly different at the probability value listed (in this case, 0.05). If the 
calculated t is smaller, then you cannot reject the null hypothesis that there is no significant difference. 
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Table 8. Critical t-Values for a Significance Level  = 0.05 

Degrees of Freedom (df) tcrit ( = 0.05) 

1 12.71 

2 4.30 

3 3.18 

4 2.78 

5 2.57 

6 2.45 

7 2.36 

8 2.31 

9 2.26 

10 2.23 

11 2.20 

12 2.18 

13 2.16 

14 2.14 

15 2.13 

16 2.12 

17 2.11 

18 2.10 

19 2.09 

20 2.09 

21 2.08 

22 2.07 

23 2.07 

24 2.06 

25 2.06 

26 2.06 

27 2.05 

28 2.05 

29 2.04 

30 2.04 

40 2.02 

60 2.00 

120 1.98 

Infinity 1.96 

 
Note: There are two basic versions of the t-test. The version presented here assumes that each sample was 

taken from a different population, and so the samples are therefore independent of one another. For example, 

the survivor and nonsurvivor finches are different individuals, independent of one another, and therefore 

considered unpaired. If we were comparing the lengths of right and left wings on all the finches, the samples 

would be classified as paired. Paired samples require a different version of the t-test known as a paired t-test, 

a version to which many statistical programs default. The paired t-test is not discussed in this guide. 

Application in Biology 

After a small population of crayfish was accidentally released into a shallow pond, biologists noticed that the 

crayfish had consumed nearly all of the underwater plant population; aquatic invertebrates, such as the water 

flea (Daphnia sp.), had also declined. The biologists knew that the main predator of Daphnia is the goldfish, 

and they hypothesized that the underwater plants protected the Daphnia from the goldfish by providing hiding 

places. The Daphnia lost their protection as the underwater plants disappeared. The biologists designed an 

experiment to test their hypothesis. They placed goldfish and Daphnia together in a tank with underwater 

plants, and an equal number of goldfish and Daphnia in another tank without underwater plants. They then 
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counted the number of Daphnia eaten by the goldfish in 30 minutes. They replicated this experiment in nine 

additional pairs of tanks (i.e., sample size = 10, or n = 10, per group). The results of their experiment and their 

calculations of experimental error (variance, s2) are in Table 9. 

Experimental hypothesis: The underwater plants protect Daphnia from goldfish by providing hiding places. 

Experimental prediction: By placing Daphnia and goldfish in tanks with and without plants, you should see a 

difference in the survival of Daphnia in the two tanks. 

Statistical null hypothesis: There is no difference in the number of Daphnia in tanks with plants compared to 

tanks without plants: any difference between the two groups occurs simply by chance. 

Statistical alternative hypothesis: There is a difference in the number of Daphnia in tanks with plants 

compared to tanks without plants. 

Table 9. Number of Daphnia Eaten by Goldfish in 30 Minutes in Tanks with or without Underwater Plants  
Tanks Plants 

(sample1) 
No Plants 
(sample2) 

Plants 
(𝒙𝒊 − �̅�𝟏)

2
 

No Plants 
(𝒙𝒊 − �̅�𝟐)

2
 

1 and 2 13 14 (9.6 – 13)
2
 = 11.56 (14.4 – 14)

2
 = 0.16 

3 and 4 9 12 (9.6 – 9)
2
 = 0.36 (14.4 – 12)

2
 = 5.876 

5 and 6 10 15 (9.6 – 10)
2
 = 0.16 (14.4 – 15)

2
 = 0.436 

7 and 8 10 14 (9.6 – 10)
2
 = 0.16 (14.4 – 14)

2
 = 0.16 

9 and 10 7 17 (9.6 – 7)
2
 = 6.76 (14.4 – 17)

2
 = 6.76 

11 and 12 5 10 (9.6 – 5)
2
 = 21.16 (14.4 – 10)

2
 = 19.37 

13 and 14 10 15 (9.6 – 10)
2
 = 0.16 (14.4 – 15)

2
 = 0.36 

15 and 16 14 15 (9.6 – 14)
2
 = 19.34 (14.4 – 15)

2
 = 0.36 

17 and 18 9 18 (9.6 – 9)
2
 = 0.36 (14.4 – 18)

2
 = 12.96 

19 and 20 9 14 (9.6 – 9)
2
 = 0.36 (14.4 – 14)

2
 = 0.16 

   ∑ (𝑥𝑖 − �̅�1)
2 

= 60.4 ∑ (𝑥𝑖 − �̅�2)
2
 = 46.4 

Mean, �̅� �̅�1 = 9.6 �̅�2 = 14.4 
∑ (𝑥𝑖 − �̅�1)2 

𝑛−1
 = 

60.4

9
 

∑ (𝑥𝑖 − �̅�1)2 

𝑛−1
 = 

46.4

9
 

  Variance, 𝑠2 𝑠1
2 = 6.71 𝑠2

2 = 5.16 

 
To determine whether the difference between the two groups was significant, the biologists calculated a t-test 

statistic, as shown below: 

SE = √
𝑠1

2

𝑛1
 + 

𝑠2
2

𝑛2
 = √

6.71

10
 + 

5.16

10
 = 1.089 

 
 
The mean difference (absolute value) = |�̅�1 −  �̅�2| = |9.6 − 14.4| = 4.8 
 

t = 
|�̅�1− �̅�2|

SE
 = 

4.8

1.089
 = 4.41 

There are (10 + 10 − 2) = 18 degrees of freedom, so the critical value for p = 0.05 is 2.10 from Table 8. The 

calculated t-value of 4.41 is greater than 2.10, so the students can reject the null hypothesis that the 

differences in the numbers of Daphnia eaten in the presence or absence of underwater plants were accidental. 

So what can they conclude? It is possible that the goldfish ate significantly more Daphnia in the absence of 

underwater plants than in the presence of the plants. 
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Analyzing Frequencies: The Chi-Square Test 
The t-test is used to compare the sample means of two sets of data. The chi-square test is used to determine 

how the observed results compare to an expected or theoretical result.  

For example, you decide to flip a coin 50 times. You expect a proportion of 50% heads and 50% tails. Based on 

a 50:50 probability, you predict 25 heads and 25 tails. These are the expected values. You would rarely get 

exactly 25 and 25, but how far off can these numbers be without the results being significantly different from 

what you expected? After you conduct your experiment, you get 21 heads and 29 tails (the observed values). Is 

the difference between observed and expected results purely due to chance? Or could it be due to something 

else, such as something might be wrong with the coin? The chi-square test can help you answer this question. 

The statistical null hypothesis is that the observed counts will be equal to that expected, and the alternative 

hypothesis is that the observed numbers are different from the expected. 

Note that this test must be used on raw categorical data. Values need to be simple counts, not percentages or 

proportions. The size of the sample is an important aspect of the chi-square test—it is more difficult to detect 

a statistically significant difference between experimental and observed results in a small sample than in a 

large sample. Two common applications of this test in biology are in analyzing the outcomes of a genetic cross 

and the distribution of organisms in response to an environmental factor of interest. 

To calculate the chi-square test statistic (χ2), you use the equation 

𝜒2 = ∑
(𝑜−𝑒)2

𝑒
 

            o = observed values 
 e = expected values 

χ2 = chi-square value 

  = summation 
 
Calculation Steps 

1. Calculate the chi-square value. The columns in Table 10 outline the steps required to calculate the chi-
square value and test the null hypothesis, using the coin-flipping example discussed above. The 
equations for calculating a chi-square value are provided in each column heading. 

 
Table 10. Coin-Toss Chi-Square Value Calculations 

Side of Coin Observed (o) Expected (e) (o − e) (o − e)
2
 (o − e)

2
/e 

Heads 21 25 (−4) 16 0.64 

Tails 29 25 4 16 0.64 

  χ
2 

= ∑ (o − e)
2
/e    →        χ

2
 = 1.28 

 
2. Determine the degrees of freedom value as follows: 

 
df = number of categories − 1 

In the example above, there are two categories (heads and tails): 
 

df = (2 − 1) = 1 

3. Use the critical values table (Table 11) to determine the probability (p) value. A p-value of 0.05 (which 
is shown in red in Table 11) means there is only a 5% probability of getting the observed difference 
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between observed and expected values by chance, if the null hypothesis is true (i.e., there is no real 
difference).  
 

For example, for df = 1, there is a 5% probability (p-value = 0.05) of obtaining a χ2-value of 3.841 or larger by 

chance. If the χ2-value obtained was 4.5, then you can reject the null hypothesis that there is no real difference 

between observed and expected data. The difference between observed and expected data is likely real and is 

considered statistically significant. 

If the χ2-value was 3.1, then you cannot reject the null hypothesis. The difference between observed and 

expected data may be accidental and is not statistically significant. 

Significance testing in biology typically uses a p-value of 0.05, which is also referred to as the alpha value (see 

“Significance Testing: The α (Alpha) Level” in Part 2). A result with the p-value of 0.05 or lower is deemed a 

statistically significant result. 

To use the critical values table (Table 11), locate the calculated χ2-value in the row corresponding to the 

appropriate number of degrees of freedom. For the coin-flipping example, locate the calculated χ2-value in the 

df = 1 row. The χ2-value obtained was 1.28, which falls between 0.455 and 2.706 and is smaller than 3.841 (the 

χ2-value at the p = 0.05 cutoff); in other words, the result was likely to happen between 10% and 50% of time. 

Therefore, you cannot reject the null hypothesis that the results have likely occurred simply by chance, at an 

acceptable significance level.  

Table 11. Critical Values Table for Different Significance Levels and Degrees of Freedom 

 
 
Application in Biology—Example 1  

Students just learned in their biology class that pill bugs use gill-like structures to breathe oxygen. The students 

hypothesized that the pill bugs’ gills require them to live in wet environments for their survival. To test the 

hypothesis, they wanted to determine whether pill bugs show a preference for living in wet or dry 

environments. 

The students placed 15 pill bugs on the dry side of a two-sided choice chamber, and 15 pill bugs on the wet 

side of the chamber. Fifteen minutes later, 26 pill bugs were on the wet side and 4 on the dry side. The data 

are shown in Table 12.  

Table 12. Pill Bug Locations on Two-Sided Chamber 

Elapsed Time (min.) Pill Bugs on Wet Side (no.) Pill Bugs on Dry Side (no.) 

0 15 15 

15 26 4 
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Experimental hypothesis: Pill bugs’ gills require them to live in wet environments for survival. 
Experimental prediction: If you place pill bugs in a two-sided chamber that is dry on one side and wet on 
the other, they will show a preference for the wet side. 
Statistical null hypothesis: There is no difference in the numbers of pill bugs on the dry and wet sides of 
the chamber; any difference between the two sides occurred purely by chance. 
Statistical alternative hypothesis: There is a difference in the numbers of pill bugs on the dry and wet 
sides of the chamber. 
 

Table 13. Pill Bug Location Chi-Square Value Calculations 

Side of Chamber Observed (o) Expected (e) (o − e) (o − e)
2
 (o − e)

2
/e 

Wet 26 15 11 121 8.07 

Dry 4 15 −11 121 8.07 

  χ
2 

= ∑ (o − e)
2
/e    →        χ

2
 = 16.14 

 
In Table 13, the degrees of freedom (df) = (2 − 1) = 1. The χ2-value is 16.14, which is much greater than the 

critical value of 3.841 (from the critical values table [Table 11] for a p-value of 0.05). This means that there is a 

statistically significant difference between expected and observed data, and it may indicate that the pill bugs 

prefer one side of the chamber to the other. 

Note that an alternative hypothesis is never proven true with any statistical test like the chi-square Test. This 

statistical test only tells you whether the null hypothesis can or cannot be rejected. There is always a chance, 

however small, that the observed difference could have occurred by chance even if the null hypothesis is true. 

Likewise, failing to reject the null hypothesis does not necessarily mean that it is true. There might be a 

difference between the observed and expected data that was too small to detect with the sample size of the 

experiment. 

Application to Biology—Example 2 

One common application for the chi-square test is a genetic cross. In this case, the statistical null hypothesis is 

that the observed results from the cross are the same as those expected, for example, the 3:1 ratio or 1:2:1 

ratio for a Mendelian trait. 

Dr. William Cresko, a researcher at the University of Oregon, conducted several crosses between marine 

stickleback fish and freshwater stickleback fish. All marine stickleback fish have spines that protrude from the 

pelvis, which presumably serve as protection from larger predatory fish. Many freshwater stickleback 

populations lack pelvic spines. Dr. Cresko wanted to find out whether the presence or absence of pelvic spines 

behaves like a Mendelian trait, meaning that it is likely to be controlled mainly by a single gene. 

In one cross, marine stickleback with spines were crossed with stickleback from Bear Paw Lake, which don’t 

have pelvic spines. All the progeny fish from this cross, the so-called F1 generation, had pelvic spines. Dr. 

Cresko then took the F1 offspring and conducted several crosses between them to produce the F2 generation. 

The results of the F2 crosses are shown in Table 14. 
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Table 14. F2 Generation: Cross of F1 Generation Individuals   
Cross Number Total Number of F2 Fish F2 Fish with Spines F2 Fish without Spines 

1 98 71 27 

2 79 62 17 

3 62 49 13 

4 34 28 6 

5 29 24 5 

6 23 17 6 

7 21 17 4 

8 19 18 1 

9 15 11 4 

10 12 10 2 

11 12 10 2 

12 4 3 1 

Total 408 320 88 

Source: Cresko, William A., A. Amores, C. Wilson, J. Murphy, M. Currey, P. Phillips, M. Bell, C. Kimmel, 

and J. Postlethwait. “Parallel Genetic Basis for Repeated Evolution of Armor Loss in Alaskan Threespine 

Stickleback Populations.” Proceedings of the National Academy of Sciences of the United States of 

America 101 (2004): 6050–6055. 

 
If the presence of pelvic spines is controlled by a single gene and the presence of pelvic spines is the dominant 

trait as suggested by the F1 results, you would expect a ratio of 3:1 for fish with pelvic spines to fish without 

pelvic spines in the F2 generation. For a total of 408 fish, the expected results would be 306:102. The results 

from Dr. Cresko’s crosses are 320:88. 

The null hypothesis is that there is no real difference between the expected results and the observed results, 

and that the difference that we see occurred purely by chance. The statistical alternative hypothesis is that 

there is a real difference between observed and expected results. 

Table 15. Stickleback Spine Chi-Square Value Calculations 

Phenotype Observed (o) Expected (e) (o − e) (o − e)
2
 (o − e)

2
/e 

Spines present 320 306 14 196 0.64 

Spines absent 88 102 −14 196 0.64 

  χ
2 

= ∑ (o − e)
2
/e    →        χ

2
 = 1.28 

 
The χ2-value is 1.28, which is less than the critical value of 3.841 (from the critical values table [Table 11] for a 

p-value of 0.05 and a df of 1). This means that the difference between expected and observed data is not 

statistically significant. Based on this calculation, we cannot reject the null hypothesis and conclude that any 

difference between observed and expected results may have occurred simply by chance. 

The chi-square example above is provided in the BioInteractive activity “Using Genetic Crosses to Analyze a 

Stickleback Trait,” http://www.hhmi.org/biointeractive/using-genetic-crosses-analyze-stickleback-trait. 

Another application of chi-square to genetics is available in the activity “Mapping Genes to Traits in Dogs 

Using SNPs,” http://www.hhmi.org/biointeractive/mapping-traits-in-dogs. 

Measuring Correlations and Analyzing Linear Regression 
Correlations can suggest relationships between sets of data. The correlation coefficient (𝑟) provides a 

measure of how related two variables are, and it is expressed as a value between +1 and −1. The closer the 

value is to 0, the weaker the correlation.  

http://www.hhmi.org/biointeractive/using-genetic-crosses-analyze-stickleback-trait
http://www.hhmi.org/biointeractive/mapping-traits-in-dogs
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For example, if you plot the width of an oak (Quercus sp.) leaf (Y) on an xy scatter plot as a function of the 

leaf’s length (X), the correlation coefficient ( 𝑟) indicates how much width depends on length. An 𝑟-value equal 

to +1 would indicate a perfect positive correlation between width and length. In other words, the longer an 

oak leaf, the wider it is. An 𝑟-value of −1 would indicate a perfect negative correlation—the longer an oak leaf, 

the narrower it is. If there is no correlation between two variables, the 𝑟-value equals 0, which would mean 

that there is no relationship between oak leaf length and width. The null hypothesis (H0) for a correlation is 

that there is no correlation and 𝑟 = 0.  

Calculating 𝑟 involves determining the sample mean of the predictor variable (�̅�) and its standard deviation 

(𝑠𝑥), the sample mean of the response variable (�̅�) and its standard deviation (𝑠𝑦), and the number of pairs (X, 

Y) of individuals in the sample (𝑛):  

 𝑟 = 
∑ (

𝑥𝑖  − �̅�

𝑠𝑥
)𝑛

𝑖=1 (
𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛 − 1
 

 
Another statistic, called the coefficient of determination, uses the square of 𝑟. The 𝑟2-value tells us the 

strength of the relationship between X and Y.  

When calculating correlations, it is important for you to remember that correlation does not imply causation. 

For example, Figure 7 shows that there is a strong negative correlation between the mean temperature of 

Earth over the last 190 years and the number of pirates in the Caribbean. Clearly, a decrease in the number of 

pirates is not the cause of global warming.  

 

 

 

 

 

 

 

 

 

Figure 7. Mean Global Temperature (°C) as a 

Function of the Approximate Number of Pirates 

in the Caribbean, 1820–2000. The line is the linear 

regression. Statistics are correlation coefficient (𝒓) 

and the coefficient of determination (𝒓𝟐).  

 
 
 
 
Calculation Steps 
Students wanted to see if there is an association between the mass of the tomatoes on a tomato plant and the 

number of seeds in the tomatoes. They picked 10 tomatoes from the plant, cut each one open, and counted 

the seeds. The data and calculations for determining the 𝑟-value are shown in Table 16. 
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Table 16. Number of Seeds and Mass (g) of Tomatoes  

Tomato No. Mass (𝒙) No. of Seeds 
(𝒚) 

𝒙𝒊 − �̅�

𝒔𝒙
 

𝒚𝒊 − �̅�

𝒔𝒚
 (

𝒙𝒊 − �̅�

𝒔𝒙
) (

𝒚𝒊 − �̅�

𝒔𝒚
) 

1 77.5 20 −0.241 −0.530 0.128 

2 81.2 26 1.439 1.061 1.527 

3 75.9 22 −0.967 0 0 

4 78.1 22 0.032 0 0 

5 77.1 18 −0.422 −1.061 0.448 

6 76.3 20 −0.785 −0.530 0.416 

7 75.7 18 −1.058 −1.061 1.123 

8 82.3 30 1.938 2.121 4.110 

9 78.9 24 0.395 0.530 0.209 

10 77.3 20 −0.331 −0.530 0.175 

Mean �̅� = 78.03 g �̅� = 22 seeds   
∑ (

𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖 − �̅�

𝑠𝑦
) 

= 8.136 

Standard 

Deviation 
𝑠𝑥 = 2.203 𝑠𝑦 = 3.771   

𝑟 = 
∑  (

𝑥𝑖 − �̅�

𝑠𝑥
)(

𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛 − 1
 = 

8.136

10 − 1
 = 

8.136

9
 = 0.904 

 
1. Calculate �̅�, 𝑠𝑥, �̅�, and 𝑠𝑦 as shown in Table 16. 

  

2. Determine 
𝑥𝑖 − �̅�

𝑠𝑥
 and 

𝑦𝑖  −�̅�

𝑠𝑦
 , multiply the two for each tomato sample, and then sum the results as 

shown in Table 16: 
 

 ∑ (
𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖  − �̅�

𝑠𝑦
)= 8.136 

 
3. Calculate 𝑟 = 8.136/9 = 0.904. 

 

4. Compare the calculated 𝑟-value with the critical value of 𝑟 at  (the H0 rejection level) = 0.05. See 
Table 17 for critical 𝑟-values. The degrees of freedom is calculated by adding the total number of data 
points minus 2. 
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Table 17. Critical 𝒓-Values at α = 0.05 

Degrees of Freedom (n pairs – 2) ±𝒓𝒄𝒓𝒊𝒕 (0.05) 

1 0.997 

2 0.950 

3 0.878 

4 0.811 

5 0.754 

6 0.707 

7 0.666 

8 0.632 

9 0.602 

10 0.576 

11 0.553 

12 0.532 

13 0.514 

14 0.497 

15 0.482 

 
Note that 𝑟-values can indicate either positive or negative correlations and can therefore vary between +1 and 

−1. Therefore, critical 𝑟-values are listed as +/−𝑟 in the table. 

In Table 17, the value for 𝑟𝑐𝑟𝑖𝑡 is ±0.632 for 8 degrees of freedom (10 pairs of observations – 2). The calculated 

𝑟-value is 0.904, which is much closer to +1 (perfect positive correlation) than to 0.632. This means that the 

probability of getting a value as extreme as 0.904 purely by chance if H0 is true (𝑟 = 0) is less than 0.05. 

Therefore, students can reject H0 and conclude that there is a statistically significant association between the 

mass of the students’ tomatoes and the number of seeds each tomato has. 

To go one step further, it is possible to calculate the coefficient of determination, 𝑟2: 
 

𝑟2 = (0.904)2 = 0.817 
 
The 𝑟2-value of 0.817 denotes the strength of the linear association between the mass of the tomatoes  (x)and 

the number of seeds (y). The closer the number is to 1, the stronger the association. 

Finally, a scatter plot graph can be used to 

illustrate the relationship (Figure 8). It is 

possible to draw a straight line that goes 

through the points—called a line of best fit. 

The line of best fit may pass through some of 

the points, none of the points, or all of the 

points. 

 
 

Figure 8. Number of Seeds Counted in Tomatoes 

as a Function of Tomato Mass. Statistics are 

correlation coefficient (𝒓) and the coefficient of 

determination (𝒓𝟐). 
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The coefficient of determination is a measure of how well the regression line represents the data. If the 

regression line passes exactly through every point on the scatter plot, it would be able to explain all of the 

variation. The further the line is away from the points, the less it is able to explain. In Figure 8, 81.7% of the 

variation in y can be explained by the relationship between x and y.  

Note: Many biological traits (i.e., animal behavior or physical appearance) vary greatly among individuals in a 

population. Thus, a coefficient of determination of 0.817 between two biological variables is considered very 

high. However, for a standard curve, as described in “Standard Curves” in Part 3, it would be considered low. 

Application in Biology—Example 1  

Students were curious to learn whether there is an association between amounts of algae in pond water and 

the water’s clarity. They collected water samples from seven local ponds that seemed to differ in water clarity. 

To quantify the clarity of the water, they cut out a small disk from white poster board, divided the disk into 

four equal parts, and colored two of the opposite parts black; they then placed the disk in the bottom of a 100-

milliliter graduated cylinder. For each sample, the students slowly poured pond water into the cylinder until 

the disk was no longer visible from above. In Table 18 they recorded the volume of water necessary to obscure 

the disk—the more water necessary to obscure the disk, the clearer the water. As a proxy for algae 

concentration, they extracted chlorophyll from the water samples and used a spectrophotometer to 

determine chlorophyll concentration (Table 18).  

Table 18. Chlorophyll Concentration (μg/L) and Clarity of Pond Water 

Pond Chlorophyll 
Concentration (𝒙) 

(μg/L) 

Water Clarity (𝒚) 
(mL) 

𝒙𝒊 − �̅�

𝒔𝒙
 

𝒚𝒊 − �̅�

𝒔𝒚
 (

𝒙𝒊 − �̅�

𝒔𝒙
) (

𝒚𝒊 − �̅�

𝒔𝒚
) 

Sandy’s 14 28 0.672 −0.656 −0.441 

Herron 5 68 −0.956 1.077 −1.029 

Tommy’s 10 32 −0.052 −0.482 −0.025 

Rocky 7 54 −0.594 0.470 −0.280 

Fishing 17 18 1.214 −1.089 −1.323 

Lost 16 25 1.033 −0.786 −0.812 

Sunset 3 77 −1.318 1.467 −1.933 

Mean �̅� = 10.29 μg/L �̅� = 43.14 mL   
∑ (

𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛

𝑖=1
 

= −5.792 

Standard 

Deviation 
𝑠𝑥 = 5.529 𝑠𝑦 = 23.083   

𝑟 = 
∑ (

𝑥𝑖−�̅�

𝑠𝑥
)(

𝑦𝑖−�̅�

𝑠𝑦
)𝑛

𝑖=1

𝑛 − 1
 = 

−5.792

7 − 1
 = 

−5.792

6
 = −0.965 

Note: Water clarity is given as the volume of water in milliliters (mL) required to obscure a black-and-

white disk at the bottom of a 100-milliliter graduated cylinder. A greater volume indicates clearer 

water. 
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Figure 9. Clarity of Pond water as a Function of 

Chlorophyll Concentration. Water clarity was 

measured as the volume of water necessary to 

obscure a black-and-white disk in the bottom of a 100-

milliliter graduated cylinder. Statistics are  correlation 

coefficient (𝒓) and the coefficient of determination 

(𝒓𝟐). 

 
Just by graphing the data points and looking at the graph in Figure 9, it is clear that there is an association 

between water clarity and chlorophyll concentration. The line slopes down, so the students know the 

relationship is negative: as water clarity decreases, chlorophyll concentration increases. 

When students calculate 𝑟, they get a value of −0.965, which is a strong correlation (with −1 being a perfect 

negative correlation). They can confirm this by checking the critical 𝑟-value on Table 17, which is ±0.754 for 5 

degrees of freedom (7 – 2) with a 0.05 confidence level. Since the 𝑟 of −0.965 is closer to −1 than the 𝑟𝑐𝑟𝑖𝑡 of 

−0.754, they can conclude that the probability of getting a value as extreme as −0.965 purely by chance is less 

than 0.05. Therefore, they can reject H0 and conclude that chlorophyll concentration and water clarity are 

significantly associated.  

Moreover, the coefficient of determination (𝑟2) of 0.932 is close to 1. As you can see from the graph, most of 

the points are close to the line. 

Application in Biology—Example 2  

Students noticed that some ponderosa pine trees (Pinus ponderosa) on a street had more ovulate cones 

(female pinecones) than other ponderosa pine trees. They hypothesized that the number of pinecones was a 

function of the age of the tree and predicted that taller trees would have more cones than younger, shorter 

trees. To determine the height of a tree, they used the “old logger” method. A student held a stick the same 

length as the student’s arm at a 90° angle to the arm and backed up until the tip of the stick “touched” the top 

of the tree. The distance the student was from the tree equaled the height of the tree. Using this method, the 

students measured the heights of 10 trees. Then, using binoculars, they counted the number of ovulate cones 

on each tree and recorded the data in Table 19. 
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Table 19. Number of Ovulate Cones on Ponderosa Pine Trees of Different Heights 

Tree No. Tree Height (m) No. of 
Cones 

𝒙𝒊 − �̅�

𝒔𝒙
 

𝒚𝒊 − �̅�

𝒔𝒚
 (

𝒙𝒊 − �̅�

𝒔𝒙
) (

𝒚𝒊 − �̅�

𝒔𝒚
) 

1 10.5 75 1.226 1.034 1.267 

2 7.2 68 0.133 0.790 0.105 

3 4.3 59 −0.828 0.475 −0.393 

4 7.9 46 0.364 0.021 0.008 

5 3.8 8 −0.994 −1.307 1.298 

6 8.3 56 0.497 0.370 0.184 

7 3.4 25 −1.126 −0.713 0.802 

8 4.1 13 −0.894 −1.132 1.012 

9 12.3 15 1.822 −1.062 −1.934 

10 6.2 89 −0.199 1.523 −0.303 

Mean �̅� = 6.8 m 
�̅� = 45.4 

cones 
  

∑ (
𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛

𝑖=1
 

= 2.046 

Standard 

Deviation 
𝑠𝑥 = 3.019 𝑠𝑦 = 28.625    

𝑟 = 
∑ (

𝑥𝑖−�̅�

𝑠𝑥
)(

𝑦𝑖−�̅�

𝑠𝑦
)𝑛

𝑖=1

𝑛 − 1
 = 

2.046

10 − 1
 = 

2.046

9
 = 0.227 

 

 

 

Figure 10. Number of Ovulate Cones on Ponderosa Pine Trees as a Function of Tree Height (m). Statistics are correlation 

coefficient (𝒓) and the coefficient of determination (𝒓𝟐). 

 
Just looking at the data points in Figure 10, it is hard to know whether there is a correlation or not. If there is a 

correlation, it is not very strong. Drawing the line of best fit suggests a positive correlation. This is clearly a case 

in which calculating 𝑟 will help determine whether the correlation is statistically significant.  

In Table 17, 𝑟𝑐𝑟𝑖𝑡 is ±0.632 for 8 degrees of freedom (10 – 2). The calculated r-value is 0.227, which is further 

away from +1 than 𝑟𝑐𝑟𝑖𝑡 0.632, so the probability of getting a value of 0.227 purely by chance is greater than 

0.05 (p > 0.05). Therefore, students cannot reject H0 and can conclude that there is not a statistically significant 

association between the numbers of ovulate cones on ponderosa pine trees and the heights of the trees. 
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Part 3: Commonly Used Calculations in Biology 

Relative Frequency 
Relative frequency is the ratio of the number of times an event occurs out of a total number of events. This 

calculated fraction can then be converted into a percentage of the total number of events measured. 

relative frequency = (number of times a specific event occurs)/(total number of events) 
 

The result can be multiplied by 100 to give the percentage. 
 

Application in Biology 

Allele and genotype frequencies are commonly calculated by population geneticists. For instance, in a 

population of 350 pea plants, suppose 112 are homozygous for the dominant yellow pea seed allele (YY), 139 

are heterozygous (Yy), and 99 are homozygous for the recessive green pea seed allele (yy). 

To determine the relative frequency (and percentage) of plants in this population that are homozygous for the 

dominant yellow pea seed allele, you should divide the number of plants that are homozygous for the yellow 

pea seed allele by the total number of plants: 

relative frequency of the homozygous dominant (YY) genotype = 112/350 = 0.32 
 

To express frequency as a percentage, multiply the frequency by 100%: 
 
percentage = 0.32 × 100 = 32% of the population has the homozygous dominant genotype 

 
To determine the relative frequency (and percentage) of the recessive green seed allele, divide the total 

number of green seed alleles in the gene pool by the total number of alleles in the population: 

relative frequency of the recessive allele (y) = [(139 × 1) + (99 × 2)]/(350 × 2) = 337/700 = 0.48 
 
percentage = 0.48 × 100 = 48% of the gene pool is the recessive green pea seed allele 

Probability 
You learned in the “Significance Testing” section of Part 2 that a probability of 0.05 means that there is a 5% 

chance for an event to happen—for example, a 5% chance of obtaining a particular test statistic by chance. 

This section provides more information about probability and how to calculate it for different scenarios. 

Probability allows scientists to predict the likelihood of the outcome of random events. Probability (p) values 

lie between 1 (the event is certain to happen) and 0 (the event certainly will not happen). The probabilities for 

all other events have fractional values. For example, the probability of throwing a 2 on a six-sided die is 1 out 

of 6 (p = 1/6), since the number 2 appears on only one of the six sides. By contrast, the probability of throwing 

a 7 on a normal six-sided die is 0.  

Rule of Addition 

The probability of either of two mutually exclusive events occurring is equal to the sum of their individual 

probabilities. 
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Example 
Given a normal six-sided die, what is the probability of you rolling either a 2 or a 4 on the die? These events 
are mutually exclusive because they cannot happen at the same time—that is, in a single roll of the die you 
cannot roll both a 2 and a 4. 
There is a 1/6 chance of rolling a 2. 
There is a 1/6 chance of rolling a 4. 
The probability of either event occurring is equal to the sum of the probability of each event: 
 

p = 1/6 + 1/6 = 2/6 = 1/3 
 

There is 1 chance in 3 of you rolling either a 2 or a 4 on the die. 
 

Rule of Multiplication  

The probability of two independent events both occurring is the product of their individual probabilities.  

Example 
Given a normal six-sided die, what is the probability of you rolling a 2 and then a 4 on two consecutive 
rolls? These events are independent of one another because they have no effect on each other’s 
occurrence—that is, if you roll a six-sided die twice, rolling a 2 on the first roll has no effect on whether 
you will roll a 4 on the second roll. 
On the first roll, there is a 1/6 chance of rolling a 2. 
On the second roll, there is a 1/6 chance of rolling a 4. 
The probability of rolling a 2 first and a 4 second follows: 
 
 p = 1/6 × 1/6 = 1/36 
 
There is 1 chance in 36 of rolling a 2 and then a 4 on two consecutive rolls of the die. 

 
Application in Biology—Example 1 

What is the probability that two parents who are heterozygous for the sickle cell allele would have three 

children in a row who are homozygous for the sickle cell allele and have sickle cell anemia? 

The probability of two parents who are heterozygous for an allele to have a child who is homozygous for that 

allele is 1 in 4: 

 p = 1/4 × 1/4 × 1/4 = 1/64 
 
There is 1 chance in 64 that these parents will have three children in a row with sickle cell disease. 

 
Application in Biology—Example 2 

Two pea plants that are heterozygous for the round (R) and yellow (Y) alleles (RrYy) are crossed and produce 

only a single seed. What is the probability of a seed from this cross having the genotype RRYy or RRYY? 

The probability of getting a seed with the RRYy genotype is 1/4 × 1/2 = 1/8 = 2/16. 
The probability of getting a seed with the RRYY genotype is 1/4 × 1/4 = 1/16. 
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To obtain the probability of getting a seed with the RRYy genotype or the RRYY genotype, we use the rule of 
addition: 

 
 p = 2/16 + 1/16 = 3/16 
 

There are 3 chances in 16 of these plants producing a seed with either the RRYy or RRYY genotype. 

Rate Calculations 
Rate is used to express one measured quantity (y) in relation to another measured quantity (x).  

In biology, rates are often calculated to indicate the change in a property of a system over time. For example, 

the rate of an enzyme-catalyzed reaction is frequently expressed as the amount of product produced by the 

enzyme in a given amount of time. When you use data plotted on a graph, you calculate the rate in the same 

way as you calculate the slope: 

rate = Δy/Δx 

(The delta symbol, Δ, represents change.) 
 
Application in Biology 

Students in an advanced biology class studied the reaction catalyzed by the catalase enzyme. Catalase 

degrades hydrogen peroxide (H2O2) to water (H2O) and oxygen gas (O2). The students set up an experiment to 

measure the amount of O2 produced by catalase over 5 minutes when it is added to H2O2. Table 20 contains 

the data collected by a group of students, and Figure 11 shows the corresponding graph. From these data, 

rates of catalase activity can be calculated over various intervals of time. 

Table 20. Volume of Oxygen Produced from the Catalysis of Hydrogen Peroxide by the Enzyme Catalase 
Time (min.) Volume of Oxygen Produced (mL) 

0 0 

1 12 

2 25 

3 33 

4 39 

5 42 

 

 

Figure 11. Oxygen Produced in a Catalase-Catalyzed Reaction as a Function of Time 
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To calculate the initial rate of reaction in the first 2 minutes of the experiment, students first subtracted the 

volume of oxygen produced at 2 minutes from the volume of oxygen produced at 0 minutes: 

Δy = 25 milliliters – 0 milliliters = 25 milliliters 
 

Next, they subtracted the number of minutes at 2 minutes from the number of minutes at 0 minutes: 

Δx = 2 minutes – 0 minutes = 2 minutes 
 

Finally, they divided the change in oxygen volume (Δy) by the change in time (Δx); this is the rate: 

 rate = 25 milliliters/2 minutes = 12.5 milliliters of O2 produced/minute 
 

Similarly, they can calculate the rate of reaction between the third and fifth minutes of the experiment: 

rate = (42 milliliters – 33 milliliters)/(5 minutes – 3 minutes) = 9/2 = 4.5 milliliters of O2 
produced/minute 

Hardy-Weinberg Frequency Calculations 
The Hardy-Weinberg equations are used in population genetics to describe the basic principle that allele 

frequencies do not change in a large, freely interbreeding population from one generation to the next.  

Allele frequencies in a population are in equilibrium (do not change) when all the following conditions are met: 

1. The population is very large and well mixed. 
2. There is no migration in or out of the population. 
3. Mutations are not occurring. 
4. Mating is random. 
5. There is no natural selection. 

 
Under Hardy-Weinberg, if the frequencies of two alleles are p and q, the frequencies of homozygotes are p2 

and q2, and of heterozygotes 2pq. If you are given the frequencies of the alleles you can calculated the 

genotype frequencies by squaring and multiplying; if you are given a homozygous genotype frequency, you 

can estimate the allele frequencies by taking the square root. 

Hardy-Weinberg predicts that the allele frequencies in a population are at equilibrium, whereby p + q = 1.0 

If the observed allele frequencies in a population differ from the frequencies predicted by the Hardy-Weinberg 

principle, then the population is not at equilibrium and evolution may be occurring. 

Application in Biology 

In a hypothetical population of 100 rock pocket mice (Chaetodipus intermedius), 81 individuals have light, 

sandy-colored fur and a dd genotype. The remaining 19 individuals are dark colored and therefore have either 

the DD genotype or the Dd genotype. Scientists assumed that this population is at equilibrium; they used the 

Hardy-Weinberg equations to find p and q for this population and calculated the frequency of heterozygous 

genotypes.  
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Scientists knew that 81 mice have the dd genotype:        q2 = 81/100 = 0.81, or 81% 
 

Next, they calculated q: 
 

q = √0.81 = 0.9  
 

Then, they calculated p using the equation p + q = 1: 
 

p + (0.9) = 1 
p = 0.1 
 

To calculate the frequency of the heterozygous genotype, they calculated 2pq: 
 

2pq = 2(0.1)(0.9) = 2(0.09) 
2pq = 0.18 

 
Based on the calculations, the estimated frequency of the recessive allele is 0.9 and the frequency of the 

dominant allele is 0.1.  

If the scientists had a way to distinguish mice that are heterozygotes from those that are homozygous 

dominant for the dark-colored fur, then they would have a way of determining whether the population is or is 

not at equilibrium and could apply a statistical test like the chi-square test to see if there is a difference. 

Standard Curves 
A standard curve is a method of quantitative data analysis in which measurements of samples with known 

properties are plotted on a graph and then the graph is analyzed to determine the properties of unknown 

samples. Analysis of the graph is performed by drawing a line of best fit through the plotted points of the 

known samples and then determining the equation of this line (in the form y = mx + b) or by interpreting the 

values of unknown samples directly from the drawn line. The samples with known properties are the 

standards, and the graph is the standard curve. Two common uses of standard curves in biology are to 

determine protein concentrations and to analyze DNA fragment length. 

Application in Biology—Example 1: The Bradford Protein Assay 

The Bradford protein assay is a colorimetric assay that determines the protein concentration of a solution by 

measuring how much light of a certain wavelength it absorbs. The light absorbance of several samples with 

known protein concentrations is measured using a spectrophotometer and then plotted on a graph as a 

function of protein concentration. Using this graph, or linear regression analysis, scientists determined the 

protein concentration of an unknown sample once its absorbance was measured. 

Table 21. Absorbance Measured at 595 Nanometers of Various Known Protein Concentrations 

  Known Protein 
Concentration (µg/mL) 

Measured Absorbance (at 
595 nm) 

1 0.433 

5 0.742 

10 1.036 

15 1.463 

20 1.750 
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Figure 12. Protein Concentration as a Function of Absorbance 

 
In Figure 12, absorbance in Table 21 was plotted as a function of protein concentration for the known samples 

(standards). The calculated coefficient of determination (𝑟2) and equation of the regression line are included 

on the graph. The closer the 𝑟2 value is to 1, the better the data fit the curve—or the more likely that the data 

points x and y are actual solutions to the equation y = mx + b.  

In this case, the equation of the line is 

y = 0.0699x + 0.3722 
 

The absorbance of the unknown protein solution was measured with a spectrophotometer as 0.921 (y = 

0.921), so the scientists used the equation of the best-fit line to determine the protein concentration (x): 

0.921 = 0.0699x + 0.3722 
 

Protein concentration of unknown: x = 7.85 micrograms per milliliter 
 

The red lines drawn on the graph in Figure 12 show how the scientists estimated the value of the unknown 

protein concentration from the regression line. To determine this estimate, they located the absorbance of 

0.921 on the y-axis and traced it horizontally to its intersection with the regression line. A vertical line from the 

intersection will cross the x-axis at the corresponding protein concentration.  

Application in Biology—Example 2: DNA Fragment Size Analysis 

In RFLP (restriction fragment length polymorphism) analysis, the fragment sizes of unknown DNA samples can 

be determined from the standard curve of DNA markers of known fragment lengths. First, scientists measured 

the distance traveled by each of the marker fragments in a gel plate and plotted it as a function of size. This 

provides a standard for comparison to interpolate the size of the unknown fragments (Table 22). 

  

y = 0.0699x + 0.3722 
r² = 0.9965 
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Table 22. Distance DNA Fragments of Different Known Lengths Migrate after Gel Electrophoresis 

Distance Migrated (mm) Fragment Length (no. of 
base pairs) 

11 23,130 
13 9,416 
15 6,557 
18 4,361 
23 2,322 
24 2,027 

 

 
             Figure 13. Marker Fragment Length as a Function of Distance Migrated 

 
Note: The standard curve in Figure 13 was plotted on a logarithmic y-axis scale, because the relationship 

between fragment length and distance migrated is exponential, or nonlinear. 

Scientists estimated the length of an unknown DNA fragment that migrated 20 millimeters by using the graph 

in Figure 13, as illustrated by the red lines. To estimate the unknown length, they located the distance of 20 

millimeters on the x-axis and traced a vertical line to the line of best fit. A horizontal line from the point of 

intersection will cross the y-axis at the corresponding fragment length. In this case, they estimated the 

fragment length to be 3,100 base pairs. 
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Part 4: BioInteractive’s Mathematics and Statistics Classroom Resources  
 

BioInteractive Resource Name 
(Links to Classroom-Ready Resources) 
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Diet and the Evolution of Salivary Amylase 
Students analyze data obtained from two different research studies in 
order to draw conclusions between AMY1 gene copy number and 
amylase production, and also between AMY1 gene copy number and 
dietary starch consumption. The activity involves graphing, analyzing 
research data using statistics, making claims, and supporting the claims 
with scientific reasoning. 

X      X X  X X    

Evolution in Action: Data Analysis 
Students analyze frequency distributions of beak depth data from Peter 
and Rosemary Grant’s Galápagos finch study and suggest hypotheses to 
explain the trends illustrated in the graphs. Students then investigate the 
effect of sample size on descriptive statistics and notice that the means 
and standard deviations vary for each subsample. Finally, students use 
wing length and body mass data to construct bar graphs, and they are 
asked to propose explanations for how and why some characteristics are 
more adaptive than others in given environments. 

X      X        

Evolution in Action: Statistical Analysis 
Students calculate descriptive statistics (mean, standard deviation, and 
95% confidence interval) for eight sets of data from Peter and Rosemary 
Grant’s Galápagos finch study. Students construct bar graphs with 95% 
confidence intervals and analyze the means of finch body measurements 
with t-tests. Students also graph two of the finch measurements against 
each other to investigate a possible association. 

X       X  X     

http://www.hhmi.org/biointeractive/diet-and-evolution-salivary-amylase
http://www.hhmi.org/biointeractive/evolution-action-data-analysis
http://www.hhmi.org/biointeractive/evolution-action-data-analysis
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BioInteractive Resource Name 
(Links to Classroom-Ready Resources) 
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The Stickleback Evolution Virtual Lab 
This virtual lab is appropriate for the high school biology classroom as an 
excellent companion to an evolution unit. Because the trait under study is 
fish pelvic morphology, the lab can be used for lessons on vertebrate 
form and function. In an ecology unit, the lab can be used to illustrate 
predator-prey relationships and environmental selection pressures. The 
sections on graphing, data analysis, and statistical significance make the 
lab a good fit for addressing the “science as a process” or “nature of 
science” aspects of the curriculum. 

     X   X      

Battling Beetles 
This series of activities complements the HHMI DVD Evolution: Constant 
Change and Common Threads and requires simple materials such as 
M&Ms, food storage bags, colored pencils, and paper cups. An extension 
of this activity allows students to model the Hardy-Weinberg principle 
and selection using a spreadsheet. The overall goal of “Battling Beetles” is 
to engage students in thinking about the mechanism of natural selection 
through data collection, analysis, and pattern recognition. 

    X       X   

Lizard Evolution Virtual Lab 
The virtual lab includes four modules that investigate different concepts 
in evolutionary biology, including adaptation, convergent evolution, 
phylogenetic analysis, reproductive isolation, and speciation. Each 
module involves data collection, calculations, analysis, and answering 
questions. The Educators tab includes lists of key concepts and learning 
objectives and suggestions for incorporating the lab in your instruction. 

X    X  X X       

http://www.hhmi.org/biointeractive/stickleback-evolution-virtual-lab
http://www.hhmi.org/biointeractive/classroom-activities-battling-beetles
http://www.hhmi.org/biointeractive/lizard-evolution-virtual-lab
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Population Genetics, Selection, and Evolution 
This hands-on activity teaches students about population genetics, the 
Hardy-Weinberg principle, and how natural selection alters the frequency 
distribution of heritable traits. It uses simple simulations to illustrate 
these complex concepts and includes exercises such as calculating allele 
and genotype frequencies, graphing and interpretation of data, and 
designing experiments to reinforce key concepts in population genetics. 

    X       X   

Mendelian Genetics, Probability, Pedigree, and Chi-Square 
Statistics 
This lesson requires students to work through a series of questions 
pertaining to the genetics of sickle cell disease and its relationship to 
malaria. These questions will probe students’ understanding of 
Mendelian genetics, probability, pedigree analysis, and chi-square 
statistics. 

            X  

Using Genetic Crosses to Analyze a Stickleback Trait 
This hands-on activity involves students in applying the principles of 
Mendelian genetics to analyze the results of genetic crosses between 
stickleback fish with different traits. Students use photos of actual 
research specimens (the F1 and F2 cards) to obtain their data; they then 
analyze the data they collected along with additional data from the 
scientific literature. In the extension activity, students use chi-square 
analysis to determine the significance of genetic data. 

        X    X  

Allele and Phenotype Frequencies in Rock Pocket Mouse 
Populations 
The lesson uses real rock pocket mouse data collected by Dr. Michael 

Nachman and his colleagues to illustrate the Hardy-Weinberg principle. 
 

 

    X       X   

http://www.hhmi.org/biointeractive/population-genetics-selection-and-evolution
http://www.hhmi.org/biointeractive/mendelian-genetics-probability-pedigree-and-chi-square-statistics
http://www.hhmi.org/biointeractive/mendelian-genetics-probability-pedigree-and-chi-square-statistics
http://www.hhmi.org/biointeractive/using-genetic-crosses-analyze-stickleback-trait
http://www.hhmi.org/biointeractive/allele-and-phenotype-frequencies-rock-pocket-mouse-populations
http://www.hhmi.org/biointeractive/allele-and-phenotype-frequencies-rock-pocket-mouse-populations
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Mapping Genes to Traits in Dogs Using SNPs 
The activity complements a 29-minute lecture by Dr. Elinor Karlsson of 
the Broad Institute in Cambridge, MA, in which she discusses genome-
wide association studies (GWAS). The activity includes a hands-on 
component that uses SNP Cards and an optional statistical analysis 
activity that uses chi-square analysis. 

        X      

 

http://www.hhmi.org/biointeractive/mapping-traits-in-dogs

